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Hawking Effect in Vaidya—Bonner Space-Time
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A new method determining the location and the temperature of event horizons
of evaporating black holes is suggested. Both the Klein—-Gordon equation and
the Dirac equation are studied with the method in a Vaidya—-Bonner space-time.
These equations are reduced near the event horizon when the generalized
tortoise coordinates are adopted. The location and the temperature of the event
horizon are shown automatically. The first approximation of our result is the
same as that obtained by using the calculation of the vacuum expectation value
of the renormalized energy-momentum tensor when the evaporation of the
black hole is very slow.

It is difficult to determine the location and the temperature of the
event horizon of an evaporating black hole because the calculation of the
vacuum expectation value of the renormalized energy-momentum tensor is
very complicated (Hiscock, 1981; Balbinot, 1986). Recently, we proposed a
new method with which one can easily show both the location and the
temperature of the event horizon of every evaporating black hole without
calculating the energy-momentum tensor (Zhao and Dai, 1992). Here, we
improve the method and make use of it to study the Vaidya—Bonner black
hole (Bonner and Vaidya, 1970).

In the Vaidya—Bonner space-time
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the Klein-Gordon equation
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can be reduced to
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where u, and e are the mass and the electric charge of the Klein—Gordon
particle, respectively, A, =(—Q/r,0,0,0), and /=0,1,2,.... Here we
have separated variables as
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Given the generalized tortoise coordinates
re=r + ln{r — ry(v)], De=0—1, 6)

we can write the radial equation (4)
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where r, is the location of the event horizon, and x is an adjustable
parameter. Both » and v, are constant under the tortoise transformation
(6), ry can be determined by the null surface condition
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In the Vaidya—Bonner space-time, equation (8) can be reduced to
ar
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ry; 1s just the solution of the equation. It means that r,, is shown as
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When r goes to r,(v,) and v goes to v,, equation (7) can be reduced
to
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We select the adjustable parameter » in equations (6) as
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= 13
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Then we have B =1; equation (11) can be written as
d%p o%p ieQ dp
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The ingoing wave solution and the outgoing wave solution of the equations
are, respectively,
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where wy, = eQ/r, is the electric potential at the horizon of the black hole.
Equation (16) can be written as

Pow =€ iov, + 2i(w — mo)r(r _ rH)i(a) — wg)/x ( 17)

It is not analytical at the horizon r,, but we can extend it by analytical
continuation to the inside of the event horizon through the lower half
complex r-plane,
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The scattering probability of the outgoing wave at the horizon is
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Following Damour and Ruffini (1976) and Sannan (1988), it is easy to

obtain the spectrum of radiation of the Klein—~Gordon particles from the
black hole:

Ny= (e ks — 1)t @y
b 4 l rH —-m — 2"”':”
T= = 2
2nky 2mky  2mry — Q2 (22)
@y =eQ[ry

where kg is the Boltzmann’s constant.

Now we deal with the Dirac equation near the event horizon of the
Vaidya-Bonner black hole.

The spinor base form of the Dirac equation in curved space-time
(Page, 1976), with signature —2, is
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where g, and e are, respectively, the mass and the electric charge of the
Dirac particle, P¢, Q¢ and V,; are the two-component spinors and the
covariant spinor differentiation expressed with spinor base components,
respectively. Equations (23) can be transformed into four coupled equa-
tions
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i, 7, B, 7, & p, m, and « are the special designations of the spin coefficients
defined by Newman and Penrose (1962). /%, n*, m¥, and m* are the null
tetrad vectors; they satisfy
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g =1Ln, +nl, —mm —mm,
In the Vaidya—Bonner space-time, they are
1,=(1]2A)"*(A/r, 0,0, 0)
n, = (128)V*(Afr, —2r, 0, 0)
m, = (r/</2)(0,0, 1, i sin §)
i, = (r/</2)(0,0, 1, —i sin 6)

and
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We calculate the spin coefficients and get
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Substituting them into equation (24) and separating variables as
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Here 4 is a constant introduced by the separation of variables.
Now, let us study the equation for R, in (32). It can be rewritten as
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By means of the generalized tortoise coordinates (6), we can write this
equation as
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When r approaches r,(v,) and v approaches v,, it can be reduced to

0°R. 0*R oR
2 + 12 +
) + au*ar*+(“°+’ wg) e

=0 (35)



2144 Zhu et al.

where
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The ingoing wave solution and the outgoing wave solution, are respec-
tively,

Rin ~ e——iwv'
+
R(:“ ~ g ~iwr, p2i(@—wglr, e %07« (r > rH) (38)

The outgoing wave (38) is not analytic at the event horizon r = r,. But we
can analytically continue it from the outside of the black hole into the
inside of the black hole, so we have

Rovt ~ o —iow, g0 = wolry g —a0r, gn(@—wo)fx pinag/2% (< p)  (39)
The relative scattering probability produced by the event horizon is
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Similarly, we get the spectrum of Hawking radiation of the Dirac particles
from the Vaidya—Bonner black hole,

N, = (e eokaT 4 1)~ (4)

where T is given by equation (22).

Equations (10) and (22) give the location and the temperature of the
event horizon of the Vaidya—Bonner black hole. Equations (21) and (41)
show the Hawking thermal spectra of the Klein—Gordon particles and the
Dirac particles in the Vaidya—Bonner space-time.

When m > Q and

m~QQ/m ~ Q*m? (42)
is very small, we have
Py =Fap =2 — QQ/m (43)

where r,, is the apparent horizon of the black hole. Substituting equation
(43) into equations (10) and (22), we get

ry =2m(1 + 4m — 200 /m — Q*/4m?>) (44)
T = (1/8nm)(1 — 41 + 2Q0 /m) (45)
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When Q =0, equations (10) and (22) become the result of the Vaidya
black hole. When n1 = Q =0, they become that of the static Reissner—
Nordstrom black hole.
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