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Hawking Effect in Vaidya-Bonner Space-Time 
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A new method determining the location and the temperature of event horizons 
of evaporating black holes is suggested. Both the Klein-Gordon equation and 
the Dirac equation are studied with the method in a Vaidya-Bonner space-time. 
These equations are reduced near the event horizon when the generalized 
tortoise coordinates are adopted. The location and the temperature of the event 
horizon are shown automatically. The first approximation of our result is the 
same as that obtained by using the calculation of the vacuum expectation value 
of the renormalized energy-momentum tensor when the evaporation of the 
black hole is very slow. 

It  is difficult to de te rmine  the loca t ion  and  the t empera tu re  o f  the 
event  hor izon  o f  an evapora t ing  b lack  hole because  the ca lcula t ion  of  the 
vacuum expec ta t ion  value o f  the renormal ized  e n e r g y - m o m e n t u m  tensor  is 
very compl i ca t ed  (Hiscock ,  1981; Balbinot ,  1986). Recent ly ,  we p r o p o s e d  a 
new m e t h o d  with which one can easily show both  the loca t ion  and  the 
t empera tu re  o f  the event  ho r i zon  o f  every evapora t ing  b lack  hole wi thou t  
ca lcula t ing  the e n e r g y - m o m e n t u m  tensor  ( Z h a o  and Dai ,  1992). Here,  we 
improve  the m e t h o d  and make  use o f  it to s tudy the V a i d y a - B o n n e r  b lack  
hole  (Bonne r  and  Vaidya ,  1970). 

In the V a i d y a - B o n n e r  space- t ime 

ds 2 (1 2m(v) QZ(v)\  2 
. . . .  \ r + - - ~  ) dv + 2 dv dr 

+ rZ(dO 2 + sin 2 0 &b 2) (1) 
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the Klein-Gordon equation 

1 - ieA u ( -g )  -ieA~ �9 = (_g) 1/2 \OX v 

can be reduced to 

s in0  sin 0 ~--~ +sin200~2+l(l+ I ) S = 0  (3) 

(I 2m " Q2~OZP - O2P {m Q: ) ~ r  

(2 (m ,  r - - - ~  TQz) ( 1 ( 1 + 1 )  ieQ)} - + /~o2 + ~ +  p = O  (4) 

where/~0 and e are the mass and the electric charge of the Klein-Gordon 
particle, respectively, A~ = ( - Q/r, 0, 0, 0), and / = 0, 1, 2 . . . . .  Here we 
have separated variables as 

= 1 p(r, v)s(O, 4)) (5) 
r 

Given the generalized tortoise coordinates 

1 
r ,  = r + ~ ln[r - rn(v)], v,  = v - vo (6) 

we can write the radial equation (4) 

_ ~  Q2 1 
{(I 2m +_~_T)(1 4 2u(r----r~)) 2kn 2u(r_~rH)} O-~z + 2 02P 

r Or, Ov, Or, 

+\2~(r'r.)+l 2• - rn) 2 1 r +-r-~ 2u(r - r ~ )  2 

+ 7 r~ ~- 1 ~ 2x(r - r . ) ] ~  dr, \ + 2~(r- r,,) 

{ 2 ( m  rQ__~) ( 1(, + 1 ) ~ ) }  
x ~ r -  + #~+ r - - - T - - +  p = 0  (7) 

where rtt is the location of the event horizon, and u is an adjustable 
parameter. Both • and Vo are constant under the tortoise transformation 
(6), rt4 can be determined by the null surface condition 

Of Of= 0 (8) 
guy Ox u c3xV 
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In the V a i d y a - B o n n e r  space-time, equat ion (8) can be reduced to 

dr 
r 2 -  2mr + Q 2 _  2r 2dvv = 0 (9) 

r .  is just the solution o f  the equation. It  means that  ru is shown as 

t o  

where 

m + [m 2 - Q 2 ( 1  - 2kH) ]  '/2 
rH -- (10) 

1 - 2iH 

When  r goes to rn(vo) and v goes to Vo, equat ion (7) can be reduced 

2p s 2p {- 2 ieQ Op _ 0 (11) 
B~r2.+ 2 Ov. Or. r .  Or. 

(r 2 - 2mr + Q2)[2~(r - rH) + 1] - 2r27~/ 
B - lira (12) 

r ~ r H ( t , o )  2xrZ(r - r H) 
V ~ V  0 

We select the adjustable parameter  z in equat ions (6) as 

r H - m  - 2rH~H 
= 2mrH _ Q2 (13) 

Then  we have B = 1; equat ion (11) can be written as 

= 0 (14) 
632p 02p ieQ c3p 
O r - - T . + 2 - -  2 2Ov. Or. + rH Or, 

The ingoing wave solution and the outgoing wave solution o f  the equations 
are, respectively, 

Pin  = e - i , o v ,  ( 1 5 )  

Pou t  = e - i~,v, + 2i(~ - ~oo)r . (16) 

where ~o 0 = eQ/rn is the electric potential at the horizon of  the black hole. 
Equat ion  (16) can be written as 

Pout = e io"*+2ir176176 - rH)  i(~ 'o~ (17) 

It is not  analytical at the hor izon r . ,  but  we can extend it by analytical 
cont inuat ion to the inside o f  the event hor izon through the lower half  
complex r-plane, 

( r - r H ) ~ l r - r n [ e  i " = ( r t _ t - - r ) e - i n  ( 1 8 )  

Po,~t - '*  P o u t  = e-i~~ + 2i( . . . .  ~  -- r) i(r176176176 e ~(~-~~176 ( 1 9 )  
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The scattering probability of the outgoing wave at the horizon is 

Pout 2 e-2"(~176 (20) 

Following Damour and Ruffini (1976) and Sannan (1988), it is easy to 
obtain the spectrum of radiation of the Klein-Gordon particles from the 
black hole: 

N ~  = (e {~ -  o~o)/k~r _ 1) - t  (21) 

x 1 r H -- m -- 2rnk  n 
T = 2nk-----B = 2nkn 2 m r n  - Q2 (22) 

o90 = eQ /r  H 

where kB is the Boltzmann's constant. 
Now we deal with the Dirac equation near the event horizon of the 

Vaidya-Bonner black hole. 
The spinor base form of the Dirac equation in curved space-time 

(Page, 1976), with signature - 2 ,  is 

(V~6 + ieAa$)p ~ + i (#o /~ /2 )Os  = 0 
(23) 

(V.,t; - ieAa$)Q ~ + i (#o/~/2) f i~ = 0 

where #o and e are, respectively, the mass and the electric charge of the 
Dirac particle, Po, Q~, and V~6 are the two-component spinors and the 
covariant spinor differentiation expressed with spinor base components, 
respectively. Equations (23) can be transformed into four coupled equa- 
tions 

(D + s -- p + ieA/.lU)F~ + (~  + n - ot + ieAurhU)F 2 = i (#o/w/2)G,  

(A + tz - Y + ieA.n")F2  + (6 + fl -- z + ieA~m~')r,  = i (#o/w/2)Gz 

(D + g -- fi + ieA. t#)G2 - (6 + ff - g + ieAum")G~ = i(l to/~/2)F2 (24) 

(A +/3 - ~ + ieAun")G,  - ( i f +  p -  ~ + ieAurhu)V2 = i(IZo/w/2)F, 

where 

Fl =p0 ,  F2 = p l ,  G1 =• i ,  G2 = - 0  6 

D = O o r = l U O u ,  A=01i =nUOu (25) 

5 = a0i = m ~ 0~, 3- = rh~ ~. 

#, 7, /?, ~, ~, P, 7r, and 0c are the special designations of the spin coefficients 
defined by Newman and Penrose (1962). l ~, n ~, m" ,  and rh u are the null 
tetrad vectors; they satisfy 
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lulU = n~,n ~' = mumU = rhuff~u = 0 

l~,m u = l~rh ~' = n~,m t' = n~rh J' = 0 

l . n ~ =  - - m , , r h " =  1 

gu,, = lvn~ + n . l v  - -  m . d l v  - ffi~,mv 

In the V a i d y a - B o n n e r  space-time, they are 

l~, = ( l l 2 A ) ' 1 2 ( A I r ,  O, O, O) 

n. = (II2A) I/2( ~tlr, - 2r, O, O) 

m u -- ( r l w / 2 ) ( O ,  O, 1, i sin 0) 

dl~, = ( r /x / i2 ) (O,  O, 1, - i sin 0) 

We calculate the spin 

and 

1 

2 

p=#x= 

l ~ = (112A)'/2(0, A/r ,  O, O) 

n ~ = ( l /2A) li2(2r, A/r ,  O, O) 

m. = ( l / x / ~  r)(0, 0, --1, - / / s i n  0) 

rh *' = ( l / x / 2  r)(0, 0, -- 1,//sin 0) 

coefficients and get 

0 

l x~ I/2 m r  - -  Q2 

~ J  r 2 

1 "],i2 A 
~) 

= - fl = ( l /2x /~  r) cgt 0 

? = \~-~j  (QQ - rhr) 

The differentiation operators  are 

D = \ 2 A ]  r Or 

( 1 " ] ' / 2 ( 2 r  ~ + A  a ~ 
6 = \TX) g 7~) 

'(k 
= -W2----; + ~ '(k 'A) 

~-= ,,/2r sinO 

mr r~ Q2] 

(26) 

(27) 

(28) 

(29) 

(30) 
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Substituting them into equation (24) and separating variables as 

GI = e~OR+ (v, r )S_  (0) 

G2 = ely"R_ (v, r)S+ (0) 

Ft = e~"~R_ (v, r )S_ (0) 

Ft = e~*R+ (v, r)S+ (0) 

we have 

~ o ~ l R +  + )' - i/%_____f 

~ ~oR_ + ~ + i/~~ 

where 

' 

( _x/~_a ']~oR_ l 
~ 2 + i#or /  - -~(2z  +#oZr2)R_ = 0  

~ _ ~ + S +  +22S+ = 0  

(31) 

(32) 

poZr--iPo2 r - - m  1 2r : - 3 m r + Q 2 " ~  
~ u  +-X-+X 2r ) 

/~2r-iPo2 r - - m  
22+p~r  2 + A 

32r2  3 m r + Q 2  r 2 ~ ) O R +  
+ a 2r - A-5 (QQ - rhr) + - o r  

{( + (QQ - rhr) + 2 2 + U2or 2 ~ A 

l 2r 2 -- 3mr + Q2X~ r - m 2r ~ -- 3mr + Q2 1 2r 2 - Q:  
- -  ) " d t- 

+ A 2r A 2 r A 2r 2 

02R+ 2r2 02R+ {~_~( 
Or 2 + A Ov Or + 

+ ~ (2r 2 - 7mr + 5Q 2) 

a 1 2r 2 - 3mr + Qz  

~~ +~ 2r 
~ l  2r2 & O 1 2r 2 - 3 m r  + Q:  r 2 i2eQr 

- A Ov + -~r -~ A 2r A 2 (QQ - rhr) + 

~+  = + s i - ~  + ~ c t g  0 

Here 2 is a constant introduced by the separation of variables. 
Now, let us study the equation for R+ in (32). It can be rewritten as 
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4r 2 r 
+-AT (r - m){OO - rhr) - -~ {2QQ - 3rhr) + i2eQ - -  

1 2 r 2 - 3 m r + Q 2 ( 1 2 r 2 - 3 m r + O  2 
+ A 2r 2r 

' t - - ~  (22 + #2r) R + = 0  

O2 _ r 2 
k 2 

A~ ( o a  - ,h~) + - -  

(33) 

By means of the generalized tortoise coordinates (6), we can write this 
equation as 

A[2x(r - rH) + 1] - 2r2t:,4 02R+ 02R+ 2z(r - r~t) + - - +  
2• - r . )  Or2. Ov. Or. 2g(r - r . )  + 1 

[ ( # 2 r - i # o 2  r - m  1 2 r Z - 3 m r + Q  2) 
x 2 ~,2-k-#2r2 + - - A - - + A  2r 

+ (2r 2 - 7mr + 5Q 2) + r2(r -- rn ) -~ ( r - - -  r~) + 1] 

rH [(2 #2r--i#~ ~-~-A-k'Ar-m 1 2 r 2 - 3 m r + Q  2) 
2~(r - - r . )  + 1 +#o2r z 2r 

__~ 1 A # ~ r - i # ~  r - m  3 + ( 2 r 2 - 7 m r + 5 Q  2) r 2 2 2 + # ~ r  2 + - - ~ + ~  

2r 2 - 3 m r + Q 2  QQ-rhr  .2eQ) OR+_~ 2 x ( r - r . )  
• r 3 A + t --r--- J~ O-~. 2 ~ ( r -  rH) + 1 

x { (  QQ-rhrA t-i ~ - ) (  #~r-i#~ --t- #2r2 + - - - ~  + A r - m  1 2 r 2 - 3 m r + Q  2 ) 2 r  

r - m 2& - 3mr + Q2 2r 2_Q2 , 4 
- A r3 -~ -274 + --~ (r - m)(aO - thr) 

rlA (2QQ - 3rhr) + i2eQ Q2 _ r 2 2r 2 - 3mr + Q2 
r2A } 2r 3 

x 2r A 2 ( Q o - r h r ) +  - X  (22 + #2r) R + = 0  

(34) 

When r approaches r.(vo) and v approaches Vo, it can be reduced to 

02R+ 02R+ t- (a0 + i2coo) 0R+ 0 (35) 
~r-----~. + 2 Or. Or~ Or--7 = 
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where 

Z h u  e t a / .  

2r 2 - 3 t u r n + Q 2  QQ. - r h r n  

�9 o = 2 r ~  2 r ~ n  

090 = + eQ (36) 
r H  

The ingoing wave solution and the outgoing wave solution, are respec- 
tively, 

Ri_~ ,-~ e -icov. 

ROUt ~ e-;o~v, r2i(~o - OJo)r . e-~or.  (r > r n ) (38) + 

The outgoing wave (38) is not analytic at the event horizon r = rn. But we 
can analytically continue it from the outside of the black hole into the 
inside of the black hole, so we have 

/~out e-i~". ' (r < r~) (39) + "~ e 2t(c~ - c~176 ' e  - a ~  e n(c~ - ~ e in=~ 

The relative scattering probability produced by the event horizon is 

R~y' 2 
- -  = e - 2~(0~ - ~ , o ) /~  ( 4 0 )  

I 
Similarly, we get the spectrum of Hawking radiation of the Dirac particles 
from the Vaidya-Bonner black hole, 

N ~  = (e(~-~176 + 1) -1 (41) 

where T is given by equation (22). 
Equations (10) and (22) give the location and the temperature of the 

event horizon of  the Vaidya-Bonner black hole. Equations (21) and (41) 
show the Hawking thermal spectra of the Kle in-Gordon particles and the 
Dirac particles in the Vaidya-Bonner space-time. 

When m >> Q and 

rh ,,~ QQ./rn .,~ Q2/m2 (42) 

is very small, we have 

r .  = Jan = 2rh -- Q Q / m  (43) 

where ran  is the apparent horizon of the black hole. Substituting equation 
(43) into equations (10) and (22), we get  

rn = 2m(1 + 4rh - 2 Q ( ) / m  - Q2/4m2) (44) 

T = ( l / 8nm) (  1 - 4rh + 2 Q~ . /m)  (45) 
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When Q = 0, equations (10) and (22) become the result of the Vaidya 
black hole. When rh = Q = 0, they become that of the static Reissner- 
Nordstr6m black hole. 
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